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a b s t r a c t

Standing waves can exist as stable vibrating patterns in perfect structures such as

spherical bodies, and inertial rotation of the body causes precession (Bryan’s effect).

However, an imperfection such as light mass anisotropy destroys the standing waves. In

this paper, an imperfection is introduced in the form of light mass anisotropy for a

throughout this paper, the effects of slow rotation and light isotropic viscous damping

are considered in a system of variables consisting of the amplitudes of principal and

quadrature vibrating patterns, the angle of the rotation of the vibrating pattern (called

the precession angle) and the phase shift of the vibrating pattern. We demonstrate how a

combination of both qualitative and quantitative analysis (using, inter alia, the method

of averaging) predicts that the inertial angular rate does not influence changes with

time in the amplitudes of the principal and quadrature vibrations or the phase shift. The

light mass imperfection causes changes with time which appear to be of a damped

oscillatory nature for both the quadrature component as well as the principal

component. The precession angular rate appears to depend on the inertial angular rate

as well as the quadrature component of the vibration but is not influenced by the

damping factor. It is not directly proportional to the inertial angular rate as is the case

for a perfect isotropically damped structure. If the quadrature component is not

suppressed, then a ‘‘capture effect’’ appears to occur, namely that the precession angle

will not grow at a constant rate but is ‘‘captured’’ and shows periodic behaviour. It is

evident that the damping factor does not influence changes with time in the phase shift

and that the mass imperfection substantially influences these changes. The phase shift

appears to be negative, strictly decreasing and unbounded.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In symmetrically distributed structures subjected to vibration and an inertial rotation, the vibrating pattern rotates at a
rate proportional to the inertial angular rate. This effect, known as ‘‘Bryan’s effect’’ in the sequel, was first observed by
Bryan in 1890 [1]. The coefficient of proportionality between the inertial and vibrating pattern rates is known as Bryan’s
factor. In a recent article, Shatalov et al. [2] confirmed the observation of Zhuravlev and Klimov [3] that Bryan’s factor
depends on the vibration mode. In addition, they demonstrated that Bryan’s factor depends on properties such as Young’s
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modulus and Poisson’s ratio and they pointed out that it depends on the geometry of the vibrating body. It was further
demonstrated that the introduction of light isotropic (viscous) damping does not affect Bryan’s effect or Bryan’s factor.

In reality, imperfections cannot be ignored in the manufacture of resonator gyroscopes (see Loper and Lynch [4])
because such imperfections cause departures from ideal mass, stiffness and damping distributions and therefore affect
resonator dynamics. In this study, by means of a linear theory of elasticity, we introduce light mass imperfections and light
isotropic damping into the equations of motion. In so doing, we develop mathematical tools which will facilitate future
study which we have earmarked to include nonlinear elasticity, prestress and anisotropic damping.

Standing waves can exist as stable vibrating patterns in perfect structures, such as spherical bodies, but mass anisotropy
destroys the standing waves. The equations of motion introduced in [2] are reformulated with light mass imperfection and
light isotropic damping taken into account. The two degrees of freedom (and their time derivatives) considered in [2] are
transformed into four new variables. These new variables consist of the amplitudes of the principal and quadrature
vibrating patterns, the angle of the rotation of the vibrating pattern (called the precession angle) and the phase shift of the
vibrating pattern. The solutions obtained for the ‘‘new’’ equations of motion are analysed by means of the method of
averaging (see Lynch [5]) and visualised by means of computer algebra. We demonstrate how a combination of both
qualitative and quantitative analysis predicts that the inertial angular rate does not influence changes with time in the
amplitudes of the principal and quadrature vibrations or the phase shift. The light mass imperfection causes changes with
time which appear to be of a damped oscillatory nature for both the quadrature component as well as the principal
component. The precession angular rate appears to depend on the inertial angular rate as well as the quadrature
component of the vibration but is not influenced by the damping factor. It is not directly proportional to the inertial
angular rate as is the case for a perfect isotropically damped structure. If the quadrature component is not suppressed, then
a ‘‘capture effect’’ appears to occur, namely that the precession angle will not grow at a constant rate but shows periodic
behaviour. It is evident that the damping factor does not influence changes with time in the phase shift and that the mass
imperfection substantially influences these changes. The phase shift appears to be negative, strictly decreasing and
unbounded.

We repeat the notation of [2] with a small modification as depicted in Fig. 1. Indeed, consider a coordinate system Oxyz

and a spherical body, with its centre at the origin O. We convert to spherical coordinates Oryf as depicted in Fig. 1.
Consider the position of rest Pðr,y,fÞ of a vibrating particle in the sphere. Let r̂ be the unit vector in the direction of
increasing r. Hence the position vector of the point Pðr,y,fÞ is r¼ rr̂. Consider the usual unit vectors /̂ ¼ qr=qf=jqr=qfj (in
the direction of increasing f) and ĥ ¼ qr=qy=jqr=qyj (in the direction of increasing y). Let w+ u+v (where w¼wr̂, u¼ uĥ

and v¼ v/̂) represent the displacement from the position of rest of the vibrating particle (see Fig. 1). The position vector of
the vibrating particle is thus

R¼ ðrþwÞr̂þuĥþv/̂: (1)

Now consider an inertial coordinate system OXYZ with origin O where initially the X, Y, Z-axes correspond to the x, y,
z-axes, respectively. Let the spherical body (the Oryf�Oxyz system) rotate about the z-axis with a small constant angular
rate eO with respect to inertial space OXYZ (here e is a ‘‘small’’ parameter, characterizing smallness of the angular rate
when compared to the lowest eigenvalue of the vibrating sphere). Consequently, we will neglect centrifugal effects and all
terms of Oðe2Þ. If k̂ is the unit vector in the direction of increasing z, then the angular velocity X of the body is

X¼ eOk̂ ¼ eOðr̂cosy�ĥsinyÞ: (2)
Fig. 1. The spherical coordinate system.
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2. Gyroscopic effects for a sphere with light mass imperfections

In this study, we assume that there is a small variation in the density of the spherical body under consideration. The
inclusion of anisotropic damping, prestress, nonlinear elasticity and methods to control their effects in a gyroscope is
beyond the scope of this paper and has been earmarked for future study.

For the sake of simplicity, assume that the density of the spherical body, r, depends only on the circumferential angle,
f. This simplification illustrates all phenomena which need to be observed for light mass imperfections. Consequently,
assume that r¼ rðfÞ with the Fourier expansion

rðfÞ ¼ r0 1þe
X1
k ¼ 1

ðak coskfþbk sinkfÞ

 !
, (3)

where e is the small positive quantity mentioned above and, in this instance, is a measure of the small variation of density
with circumferential angle f. One assumes, as in [2], that a solution to the equations of motion of the m, n-vibration mode
may be expressed by

um,nðr,y,f,tÞ ¼Uðr,yÞ½CðtÞcosmfþSðtÞsinmf�,
vm,nðr,y,f,tÞ ¼ Vðr,yÞ½CðtÞsinmf�SðtÞcosmf�,

wm,nðr,y,f,tÞ ¼Wðr,yÞ½CðtÞcosmfþSðtÞsinmf�, (4)

where m is the circumferential wave number and n is the integer associated with the spherical Bessel functions involved in
expressions for the eigenfunctions U=Um,n, V=Vm,n and W=Wm,n. Knowing the exact nature of U, V and W is not necessary
for this study, but they may be determined using the methods discussed in [2]. The nature of the functions C(t)=Cm,n(t) and
S(t)=Sm,n(t) is still to be determined. In the sequel, for the sake of brevity, we suppress the subscripts m, n if no confusion is
likely.

The mathematical formulation given below (in spherical coordinates) is presented within the framework of the three-
dimensional theory of linear elasticity and is similar to that presented in [2]. With Lagrange’s equations in mind, we
formulate expressions for the (approximate) kinetic and potential energies of the vibrating particles in the sphere. The
absolute linear velocity of a vibrating particle with its position of rest at point Pðr,y,fÞ (see Fig. 1) is

V¼
dR

dt
þX� R¼ ð _w�eOvsinyÞr̂þð _u�eOvcosyÞĥþð _vþeOðucosyþ½rþw�sinyÞÞ/̂: (5)

The kinetic energy of the m,n-vibration mode of a sphere with light mass anisotropy and of radius a is described by

Ek ¼
1

2

Z 2p

0

Z p

0

Z a

0
rðfÞ V�V r2 sinydr dydf: (6)

Consequently, neglecting terms of Oðe2Þ, Eq. (6) yields

Ek ¼
1

2

Z 2p

0

Z p

0

Z a

0
rðfÞfð _u2

þ _v2
þ _w2

Þþ2eO½ðu _v� _uvÞcosyþð _v½rþw��v _wÞsiny�gr2 sinydr dydf: (7)

Using Eq. (4), notice that

_u2
¼ 1

2U2½ _C
2
ð1þcos2mfÞþ _S

2
ð1�cos2mfÞþ2 _C _Ssin2mf�, (8)

with similar expressions for _v2, _w2, _uv, _vw and v _w. Now recall, for instance, that (for integers k and m)

Z 2p

0
sinkfsin2mfdf¼

0 if ka2m,

p if k¼ 2m:

(
(9)

Hence only the zeroth and 2m-th harmonics of the Fourier expansion (3) are crucial to the calculation of Eq. (7). Thus the
approximate kinetic energy of the m, n-vibration mode of a sphere with light mass anisotropy is

Ek ¼
1

2

Z 2p

0

Z p

0

Z a

0
r2mðfÞfð _u

2
þ _v2
þ _w2

Þþ2eO½ðu _v� _uvÞcosyþð _v½rþw��v _wÞsiny�gr2 sinydr dydf (10)

where

r2mðfÞ ¼ r0½1þeð2D1 cos2mfþ2D2 sin2mfÞ� (11)

and, for the sake of subsequent simplification, we have chosen the Fourier coefficients a2m ¼ 2D1 and b2m ¼ 2D2. As
discussed in [2] with N=1 (only one layer is present here), the strain (or potential) energy is given in terms of stresses
s¼ sm,n and strains e¼ em,n by

Ep ¼
1

2

Z 2p

0

Z p

0

Z a

0
fsrrerrþsyyeyyþsffeffþsryeryþsyfeyfþsrferfgr

2 sinydr dydf: (12)
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After substitution of (4) and (11) into (10) and after extensive simplification using computer algebra we determined that

EkðC,S, _C , _SÞ ¼
1

2
ð _C

2
þ _S

2
ÞpI0þeOð _CS�C _SÞpI1þ

eD1

2
ð _C

2
� _S

2
ÞþeD2

_C _S

� �
pI2, (13)

where

I0 ¼ r0

Z p

0

Z a

0
½U2þV2þW2�r2 sinydr dy, (14)

I1 ¼ 2r0

Z p

0

Z a

0
V ½UcosyþWsiny�r2 sinydr dy, (15)

and

I2 ¼ r0

Z p

0

Z a

0
½U2�V2þW2�r2 sinydr dy: (16)

As in [2] Eq. (11), the potential energy can be expressed in terms of C and S as

EpðC,SÞ ¼ 1
2ðC

2þS2ÞpI3: (17)

For the sake of brevity, the definite integral I3 is not given explicitly here (unlike the Ij; j=0, 1, 2 above) because the
integrand contains many terms involving Young’s modulus, Poisson’s ratio and the sums of squares and products of
eigenfunctions U, V and W, and derivatives qU=qr, qU=qy, qV=qr, qV=qy, qW=qr and qW=qy. This detail may be readily
determined using computer algebra and [2, Eqs. (7) and (8)]. Furthermore, it is not necessary to know the numerical values
of the definite integrals I0,I1,I2 and I3 in this paper. However, these numerical values may be calculated once the
eigenfunctions for the m, n-vibration mode are known (see [2]) and they may then be used to calculate constants such as
Bryan’s factor and the eigenvalue for the m, n-vibration mode (see Eqs. (24)).
3. Bryan’s effect for a sphere with light mass imperfections

The Lagrangian of the m, n-vibration mode is given by

LðC,S, _C , _SÞ ¼ EkðC,S, _C , _SÞ�EpðC,SÞ: (18)

The m, n-vibration mode is governed by the Lagrange–Euler equations of motion

d

dt

qL

q _C

� �
�

qL

qC
¼�

qF
q _C

, (19)

d

dt

qL

q _S

� �
�
qL

qS
¼�

qF
q _S

, (20)

where

F ¼ pD

2
ð _C

2
þ _S

2
Þ (21)

is Rayleigh’s dissipation function. Let the ‘‘isotropic damping factor’’ be

ed¼ D

2I0
: (22)

We use the symbol e again to emphasise ‘‘smallness’’, because even though damping is ever present, resonator gyroscopes
are manufactured from materials with a high Quality factor Q ¼ 2p Energy stored=Energy dissipated per cycle.

After substituting (13) and (17) into Eq. (18) and computing the necessary derivatives, Eqs. (19) and (20) yield,
respectively, the coupled system of linear ordinary differential equations (ODE) in matrix form:

1þeD1x eD2x
eD2x 1�eD1x

" #
€C
€S

" #
þo2 C

S

� �
¼ 2e

�ZO _S�d _C
ZO _C�d _S

" #
, (23)

with

�1rZm,n ¼
I1

I0
r1, �1rxm,n ¼

I2

I0
r1, o2

m:n ¼
I3

I0
: (24)

Note that Zm,n is Bryan’s factor and that om:n is an eigenvalue for the vibrating system as determined in [2] Eqs. (19) and
(20) (with N=1) for a perfect spherical body, with or without light isotropic damping. Left multiplying Eq. (23) by the
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inverse of the leading coefficient matrix of Eq. (23) and neglecting terms of Oðe2Þ, we obtain, to a good approximation:

€C
€S

" #
þo2

1�er1 �er2

�er2 1þer1

" #
C

S

� �
¼ 2e

�ZO _S�d _C
ZO _C�d _S

" #
, (25)

where we have used the symbols

r1 ¼D1x, r2 ¼D2x (26)

to emphasise the role of the 2m-th harmonics of the Fourier expansion for density r (see Eqs. (3) and (11)). Eq. (25)
represents two coupled, simultaneous, linear, ordinary differential equations

€Cþo2C ¼ ef1ðC,S, _C , _SÞ (27)

and

€Sþo2S¼ ef2ðC,S, _C , _SÞ, (28)

where

f1 ¼�2ðZO _Sþd _C Þþðr1Cþr2SÞo2 (29)

and

f2 ¼ 2ðZO _C�d _SÞþðr2C�r1SÞo2: (30)

4. Solutions

For an ideal sphere without damping, which has no inertial rotation (eO¼ 0), the right-hand sides of Eqs. (27) and (28)
are zero. Reasoning in a manner similar to that discussed in Freidland and Hutton [6], consider parameters P,Q ,mY and c,
which are constants that depend on initial conditions. Then it is readily seen via substitution that

C ¼ PcosmYcosgðtÞ�QsinmYsingðtÞ,

S¼ PsinmYcosgðtÞþQcosmYsingðtÞ (31)

and consequently

_C ¼�oðPcosmYsingðtÞþQsinmYcosgðtÞÞ,

_S ¼�oðPsinmYsingðtÞ�QcosmYcosgðtÞÞ, (32)

with

gðtÞ ¼otþc (33)

yield a periodic solution to the system of ODE (27) and (28). Thus the orbit of the point (C,S) in the CS-plane is an ellipse
with P and Q the lengths of the major and minor semi-axes, respectively, mY the angle between the C-axis and the major
axis of the ellipse and c a phase angle.

For a perfectly manufactured sphere, if the inertial angular rate eO is nonzero and light isotropic damping is present,
then Eq. (30) of [2] indicates that the orbit will appear to be a slowly shrinking ellipse which is slowly precessing with a
precession rate of ZeO where Z is Bryan’s factor (see Eq. (24)). This precession was also noted by [6] in the absence of
damping. Consequently, some or all of the quantities P,Q ,Y and c are slowly varying, unlike C or S, which are rapidly
varying. As observed by [6] just after Eq. (2.10), the rapidly varying quantities C and S are ‘‘difficult to relate to the’’ inertial
angular rate, while the behaviour of the slowly varying quantities P,Q ,Y and c ‘‘may be expected to be more indicative of
the’’ inertial angular rate. Consequently we generalise the method of [6] and Lynch [5] by introducing a change from ‘‘fast’’
to ‘‘slow’’ variables ðCðtÞ,SðtÞ, _C ðtÞ, _SðtÞÞ�!ðPðtÞ,Q ðtÞ,YðtÞ,cðtÞÞ. This is achieved by considering the transformation:

CðtÞcosmfþSðtÞsinmf¼ PðtÞcosmðf�YðtÞÞcosðotþcðtÞÞþQ ðtÞsinmðf�YðtÞÞsinðotþcðtÞÞ: (34)

Without loss of generality assume that Pa0. If Q=0, the right-hand side of Eq. (34) represents a standing wave, whereas if
0aP¼ Q , it represents a travelling wave. If 0aPaQa0, then it represents a phenomenon which is a ‘‘mixture’’ between a
standing and travelling wave which we call a precessing wave. This name is appropriate because, even if the inertial
rotation rate eO is zero, the vibration pattern undergoes slow precession owing to the presence of the light mass
anisotropy, as we demonstrate below.

Without loss of generality, assume that 0aPaQ . Proceeding from Eq. (34), using double-angle identities, we find that

CcosmfþSsinmf¼ cosmf½PcosmYcosðotþcÞ�QsinmYsinðotþcÞ�þsinmf½PsinmYcosðotþcÞþQcosmYsinðotþcÞ�:

(35)
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By equating the coefficients of cosmf and sinmf on both sides of Eq. (35), it follows that the transformation requires that

CðtÞ ¼ PðtÞcosmYðtÞcosgðtÞ�Q ðtÞsinmYðtÞsingðtÞ,

SðtÞ ¼ PðtÞsinmYðtÞcosgðtÞþQ ðtÞcosmYðtÞsingðtÞ, (36)

with

gðtÞ ¼otþcðtÞ: (37)

To interpret this transformation, regard C(t) as the ‘‘cosine’’ and S(t) as the ‘‘sine’’ output of a vibratory gyroscope connected
to a two-channel oscilloscope. Then the Lissajous figure produced on the oscilloscope screen will resemble the slowly
shrinking, slowly precessing ellipse-like orbit which we call a precessing-ellipse, depicted in Fig. 2, where
�
 the major semi-axis of the precessing-ellipse P(t) represents the amplitude of the principal or in-phase precessing wave;

�
 the minor semi-axis of the precessing-ellipse Q(t) represents the amplitude of the quadrature precessing wave;

�
 mYðtÞ is the angle between the C-axis and the major axis of the precessing-ellipse; and

�
 cðtÞ is the phase angle of the vibrating pattern.

The angle mY is called the precession (or electrical) angle of the vibrating pattern and the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2þQ2

p
is the

amplitude of the vibrating pattern. Hence m _Y is the rate of rotation of the vibrating pattern within the rotating reference
frame Oxyz and is called the precession rate. According to [6], on page 546, the orbital angle gðtÞ ¼otþcðtÞ indicated here in
Fig. 2 is the angle on a circle, with centre at (0,0) of radius P measured anti-clockwise from the major axis to a line through
a point A which is at the intersection of the circle and a line parallel to the minor axis through the point (C,S). The point A

has no physical significance but has the property that it moves with an angular rate o.
Keeping in mind that _g ¼oþ _c and examining the expression for _C and _S, assume, respectively, that

_PcosmYcosg� _Q sinmYsing�m _Y½PsinmYcosgþQcosmYsing�� _c½PcosmYsingþQsinmYcosg� ¼ 0 (38)

and

_PsinmYcosgþ _Q cosmYsingþm _Y½PcosmYcosg�QsinmYsing�� _c½PsinmYsing�QcosmYcosg� ¼ 0: (39)

This yields, respectively:

_C ðtÞ ¼�o½PðtÞcosmYðtÞsingðtÞþQ ðtÞsinmYðtÞcosgðtÞ�,

_SðtÞ ¼�o½PðtÞsinmYðtÞsingðtÞ�Q ðtÞcosmYðtÞcosgðtÞ�: (40)

Thus with (36) and (40) we have achieved what [6] discussed on page 546 for the case m=1. From Eq. (40), by
differentiation, and because

o _g ¼o2þo _c, (41)

it follows that

€Cþo2C ¼�oF1ð
_P , _Q ,m _Y, _c,P,Q ,mY,cÞ (42)
Fig. 2. Lissajous figure on the screen of a two-channel oscilloscope representing a ‘‘precessing-ellipse’’.
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and

€Sþo2S¼�oF2ð
_P , _Q ,m _Y, _c,P,Q ,mY,cÞ, (43)

where

F1 ¼
_PcosmYsingþ _Q sinmYcosg�m _Y½PsinmYsing�QcosmYcosg�þ _c½PcosmYcosg�QsinmYsing� (44)

and

F2 ¼
_PsinmYsing� _Q cosmYcosgþ _mY½PcosmYsingþQsinmYcosg�þ _c½PsinmYcosgþQcosmYsing�: (45)

Substituting Eqs. (36) and (40) into Eqs. (29) and (30) yields f1 and f2 in terms of the transformed variables, that is,
f1 ¼ f1ðP,Q ,mY,gÞ and f2 ¼ f2ðP,Q ,mY,gÞ. We now have a system of four equations with four unknowns, namely Eqs. (38)
and (39) together with

F1ð
_P , _Q ,m _Y, _c,P,Q ,mY,cÞ ¼ �

e
o f1ðP,Q ,mY,gÞ (46)

and

F2ð
_P , _Q ,m _Y, _c,P,Q ,mY,cÞ ¼�

e
o

f2ðP,Q ,mY,gÞ, (47)

where Eq. (46) (respectively, Eq. (47)) is obtained by comparing the right-hand sides of Eqs. (27) and (42)) (respectively,
Eqs. (28) and (43)). These four equations may be written in terms of a coefficient matrix M as follows:

M

_P
_Q

m _Y
_c

2
66664

3
77775¼

0

0

�
e
o

f1ðP,Q ,mY,gÞ

�
e
o

f2ðP,Q ,mY,gÞ

2
6666664

3
7777775
: (48)

Multiplication of Eq. (48) from the left by M�1 yields the coupled system of nonlinear first-order ODEs (with ‘‘slow
variables’’ P,Q ,Y and c and ‘‘fast variable’’ g):

_P ¼�
e
o ½f1 cosmYþ f2 sinmY�sing,

_Q ¼�
e
o
½f1 sinmY�f2 cosmY�cosg,

m _Y ¼
e

oðP2�Q2Þ
f½PsinmYsingþQcosmYcosg�f1�½PcosmYsing�QsinmYcosg�f2g,

_c ¼�
e

oðP2�Q2Þ
f½PcosmYcosgþQsinmYsing�f1þ½PsinmYcosg�QcosmYsing�f2g: (49)

In order to better understand the system of ODE (49), consider the averaging operator

/�S¼
1

2p

Z 2p

0
ð�Þdg, (50)
Fig. 3. There is close agreement between the nonaveraged principal vibration P (the black curve) and the averaged quantity (the grey curve).
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with regard to the fast variable g. We used computer algebra (otherwise the calculations are tedious) to verify that the
averages of the functions in Eqs. (49) are given by

_P ¼
eo
2

Q ½r1 sin2mY�r2 cos2mY��edP,

_Q ¼�
eo
2

P½r1 sin2mY�r2 cos2mY��edQ ,

m _Y ¼ ZeOþeo PQ

ðP2�Q2Þ
½r1 cos2mYþr2 sin2mY�,

_c ¼�
eo
2

ðP2þQ2Þ

ðP2�Q2Þ
½r1 cos2mYþr2 sin2mY�: (51)

Except for the phase shift, when we solved and visualised both the ‘‘nonaveraged’’ system of ODEs (49) and the ‘‘averaged’’
system of ODEs (51) by means of computer algebra, it was evident that the respective solutions agree closely but are not
identical. The ‘‘nonaveraged’’ and ‘‘averaged’’ phase shifts initially agree and, with evolution in time, show similar trends.

From the system of ODEs (51) it appears that the inertial angular rate eO does not influence changes with time in the
amplitudes P and Q or the phase c. The light mass imperfection causes changes with time which appear to be of a damped
vibratory nature for both the quadrature component Q as well as the principal component P, as indicated in Fig. 4. The
precession angular rate m _Y appears to depend on the inertial angular rate as well as the quadrature component Q of the
vibration, but is not influenced by the damping factor d. It is not directly proportional to the inertial angular rate eO as is
the case for a perfect isotropically damped structure where the constant of proportionality is Bryan’s factor Z. If the
quadrature component is not suppressed, then a ‘‘capture effect’’ (as indicated in Fig. 5) appears to occur, namely that the
precession angle mY will not grow at a constant rate but shows periodic behaviour. It appears that the damping factor
does not influence changes with time in the phase shift c and that the light mass imperfection substantially influences
these changes. The phase shift appears to be negative, strictly decreasing and unbounded.

5. Example

The following numerical experiment considers the influence of light mass imperfection and light isotropic damping in a
slowly rotating ball with regard to the dynamics of its vibrating pattern. We solve systems (49) and (51) using the
Fig. 4. The black curve represents damped principal vibration (P) while the grey curve represents damped quadrature vibration (Q).

Fig. 5. The precession angle mY for a slowly rotating vibrating sphere with light mass imperfections is ‘‘captured’’ periodically (the black curve) while the

ideal case precession angle ZeOt increases linearly (the grey line).



Fig. 6. The averaged phase angle c (grey curve) and nonaveraged phase angle c (black curve) agree initially and show similar trends with evolution in time.
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‘‘NDSolve’’ routine of Mathematicas set at default ‘‘WorkingPrecision’’. We have checked that default precision yields at
least 5 digits of accuracy over the interval 0rtr600 s using methods similar to those described in [7]. For this example,
let e¼ 1

100 ,o¼ 2p rad s�1,Z¼ 9
10 ,O¼ prad s�1,r1 ¼ 1,r2 ¼

7
10 ,m¼ 2 and d¼ 1

10 s�1 and choose initial conditions as P(0)=1,
Q(0)=0, Yð0Þ ¼ 0 rad and cð0Þ ¼ 0 rad. Visual inspection of the eight solutions shows that an averaged quantity exhibits the
same trend as the corresponding nonaveraged quantity with evolution in time. This trend is close for P, Q and mY. For
instance, this can be seen clearly in Fig. 3 for P. The damped behaviour of the principal and quadrature vibrations is evident
when one observes P and Q in Fig. 4.

For small inertial angular rates eO, Fig. 5 demonstrates the ‘‘capture effect’’ in comparison with the pattern’s precession in an
ideal state (where no light mass (or other) imperfections are present), with or without isotropic viscous damping. The thick grey
line indicates the ideal case with the precession angle mY¼ ZeOt changing linearly, while the light mass imperfection-induced
precession angle mY initially shows a linear tendency but is then ‘‘captured’’ in what appears to be a periodic manner.

The averaged and nonaveraged phase angles c agree initially and then show a similar trend with evolution in time as
demonstrated by Fig. 6.

6. Conclusions

In order to study the effects of light mass imperfections on slowly rotating vibrating bodies, we introduced a new
system of variables. This allowed us, using inter alia, the method of averaging, to predict, how principle and quadrature
vibrating patterns will change with time. We demonstrated that an apparent ‘‘capture effect’’ occurs with the precession
angle and that phase shift appears to be negative, strictly decreasing and unbounded. We demonstrated that if light
isotropic damping is taken into account, then damped vibratory motion appears to take place but the damping does not
affect the precession angle or phase shift.

We have developed mathematical tools which will facilitate future study which we have earmarked to include
anisotropic damping, prestress, nonlinear elasticity and methods to control their effects in a resonator gyroscope.
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